
Command : loop

Type : compiler / flow control

Arguments : <entry>

Returns :

Description

encloses the address of the control directive in the dictionary

and calculates the difference between <entry> and the current

dictionary pointer. It then encloses this offset in the dictionary

as the jump offset.

Command : +loop

Type : compiler / flow control

Arguments : <entry>

Returns :

Description

encloses the address of the +loop control directive in the

dictionary, and then does the same as loop.

Command : leave

Type : compiler / flow control

Arguments :

Returns :

Description

encloses the address of the control directive in the dictionary.

Command : begin

Type : compiler / flow control

Arguments :

Returns : <entry>

Description

pushes the address of the next dictionary location to the stack.

Command : [

Type : compiler / string output

Arguments :

Returns :

Description

encloses the address of the control directive in the dictionary

and then tokenises the characters up to the next] into the

dictionary space.

When the [is executed the string between the left and right

brackets [] will be echo directly to the screen.

Command : {

Type : compiler / string output

Arguments :

Returns : <string>

Description

encloses the address of the control directive in the dictionary

and tokenises the buffer up to the next } into the dictionary

space.

When then { is executed it will push the string between the left

and right brackets {} onto the stack (similar to the () in execute

mode).

Command : end,

Type : compiler / definitions

Arguments : <entry> <entry>

Returns :

Description

encloses the address of the program control directive in the

dictionary, computes the relative jump value and writes it in the

dictionary. Used in defining new compiler keywords.

Command : else

Type : compiler / flow control

Arguments : <entry>

Returns : <entry>

Description

else encloses the address of the control directive in the

dictionary, calculates the value of the relative jump and saves

the current value of the dictionary on the stack. Used as part of

an if..else..then clause.

Command : then

Arguments : <entry>

Returns :

Description

pops the stack, computes the difference between the address

and the current values of the dictionary pointer and store the

value in the dictionary.

Command : do

Arguments : <start> <end>

Returns :

Description

encloses the address of the control direct in the dictionary and

pops the top two entries from the data stack and pushes them

onto the return stack.

Command : do,

Type : compiler / flow control

Arguments : <entry>

Returns : <entry>

Description

stores the top stack entry in the dictionary and pushes the new

value of the dictionary pointer to the stack.

Command : if

Type : compiler / flow control

Arguments :

Returns : <entry>

Description

stores the address of the control directive in the dictionary,

reserves the next word in the dictionary and pushes its

address to the stack.

Command : while

Type : compiler / flow control

Arguments : <entry> <entry>

Returns :

Description

encloses the address of the control directive in the dictionary,

the difference between the second stack entry and the

dictionary pointer is calculated and enclosed as the jump

offset, it also writes this offset into the address pointed to by

the top stack entry.

Command : vdu

Type : command / IO / graphics

Arguments : <code>

Returns :

Description

The <code> will be sent to the vdu drivers - this command is

similar to echo.

Command : plot

Type : command / IO / graphics

Arguments : <code> <x> <y>

Returns :

Description

This command will pass the stack entries to the vdu drivers, it

assumes that the correct number of stack entries is present. If

not then the stack will underflow and indeterminate data will be

passed to the drivers.

Command : colour

Type : command / IO / graphics

Arguments : <colour>

Returns :

Description

passes the following control codes to the vdu drivers. 17

<colour> to select the text colour. vdu could be used but is less

efficient.

Command : gcol

Type : command / IO / graphics

Arguments : <effect> <colour>

Returns :

Description

used to select the type of plotting performed by the graphics

commands.

Command : ;

Type : compile mode terminator

Arguments :

Returns :

Description

semi-colon is used to terminate the definition of a new word, it

exits from compile mode and enters execution mode. It writes

the address of the interpreter routine semi into the dictionary

and advance the pointer by 4.

Command : ;code

Type : compile mode terminator

Arguments :

Returns :

Description

semi-colon-code is used to terminate a forth word definition

and encloses the address of the hidden routine scode in the

dictionary. Machine code or assembler follows the statement

and will be executed when the defined keyword is invoked.

Command : end

Type : compiler directive / flow control

Arguments : <entry>

Returns :

Description

End is used to terminate a begin end construct. The address

on the stack was the value of the dictionary pointer when begin

was executed.

Command : #ptr

Type : command / filing

Arguments : <handle>

Returns : <offset>

Description

#ptr will return the current position of the file pointer within the

file selected by <handle> and push it onto the data stack.

Command : putc

Arguments : <data> <handle>

Returns :

Description

putc will write a lsb of <data> into the file selected by

<handle>. Care should be taken as all files are opened

read/write and may be modified.

Command : getc

Type : command / filing

Arguments : <handle>

Returns : <data>

Description

getc will read one byte from the selected file, expand it up to

32 bits and push it onto the stack.

Command : putw

Type : command / filing

Arguments : <data> <handle>

Returns :

Description

putw will write <data> as a 32 bit word into the file selected by

<handle>, it is written lsb first.

Command : getw

Type : command / filing

Arguments : <handle>

Returns : <data>

Description

getw will read 4 bytes from the file selected by <handle> and

push them onto the stack as a 32 bit word. The bytes are read

lsb first.

Command : eof

Arguments : <handle>

Returns : <status>

Description

returns 1 if end of file <handle> has been reached, -1 if a read

has occurred past the end of file and 0 otherwise.

Command : save

Type : command / HOST image dump

Arguments :

Returns :

Description

This command creates a file called image in the current

directory that is a mirror image of the state of the forth machine

when the command was typed. This does not include stacks or

multitasking status - just the dictionary.

Command : oscli

Type : command / HOST

Arguments : <string>

Returns :

Description

<string> is in ‘(’ format and is passed unmodified to the

operating system.

Command : (

Type : command / string operator

Arguments :

Returns : loads of stuff - see description

Description

This command will copy the string that is enclosed by the

brackets () to the data stack. it will then push the length of the

string onto the data stack. The string will be terminated by a 0

byte starting at the address after the length word has been

popped.

Command : type

Type : command / string display

Arguments : <length> <loads of words marking string>

Returns :

Description

this command will print the next <length> bytes from the top of

the data stack. after completion the stack has the string

removed as is aligned to a word boundary.

Command : close

Type : command / Filing

Arguments : <file handle>

Returns :

Description

this command will close the file that has a file handle <file

handle>. a zero value for <file handle> will close ALL system

files - this could be dangerous.

Command : load

Type : command / filing

Arguments : <length> <string>

Returns :

Description

this command will load the forth file identified by the string that

is on the top of the stack (see the ‘(’ entry earlier).

Command : open

Type : command / filing

Arguments : <string>

Returns : <status> [<handle>]

Description

open takes a filename string (in type format) from the stack

and tries to open the file with read/write or create access. This

means if the file exists it may be modified, and if not it will be

created. If an error occurs then a zero will be pushed to the

stack otherwise a 1 and the handle are pushed to the stack.

Command : ptr#

Type : command / filing

Arguments : <offset> <handle>

Returns :

Description

ptr# will move the filepointer of the file <handle> up to position

<offset> in the file, extending the file if need be. If 0 is used as

the offset the file may be read from the start.

Command : constant

Type : defining word

Arguments : <entry>

Returns :

Description

creates a word length constant dictionary entry whose value is

the top stack entry and whose name follows the constant

keyword. When the keyword name is executed the value of the

constant will be pushed to the data stack.

Command : variable

Arguments : <entry>

Returns :

Description

creates a word length variable entry whose value is the top

stack entry and whose name follows the constant keyword.

When the keyword name is executed the address of the

keyword is pushed to the stack.

Command : immediate

Type : vocabulary management

Arguments :

Returns :

Description

delinks the last keyword from the CURRENT vocabulary and

links it to the COMPILER vocabulary. Adds keywords to the

compiler vocabulary.

Command : <builds

Type : defining word

Arguments :

Returns :

Description

creates a CONSTANT keyword definition with an initial value

of 0. The name is the token following <builds in the input

buffer. MUST be terminated by a DOES> keyword.

Command : does>

Type : program control

Arguments : <return stack entry1> <return stack entry2>

Returns :

Description

replaces the first word in the code body of the latest entry in

the vocabulary with the top return stack entry and replaces the

code address with the second return stack entry.

Command : vocabulary

Type : defining word

Arguments :

Returns :

Description

creates a keyword whose name follows it , with an initial link to

the latest entry in the CURRENT vocabulary. When executed it

sets CURRENT to the link address. Used for defining new

vocabularies.

Command : c?

Type : command / IO

Arguments :

Returns :

Description

this command will display the byte at the address pointed to by

<entry> in the current number base on the display.

Command : forget

Type : dictionary management

Arguments :

Returns :

Description

Searches the current vocabulary for the keyword following the

forget and will remove all keyword from that point forwards. It

is to forget priority to completely erase the ARMFORTH

dictionary.

Command : ‘

Type : command / vocabulary

Arguments :

Returns : [<entry>]

Description

scans the token following the tick in the input buffer and

searches the CURRENT and CONTEXT vocabularies. If the

word is found its execution address is pushed to the stack

otherwise the keyword followed by a question mark will be

displayed.

Command : definitions

Type : command / vocabulary

Arguments :

Returns :

Description

sets the system variable CURRENT to the value in CONTEXT.

Command : create

Type : defining word

Arguments :

Returns :

Description

creates a dictionary header for the primitive keyword whose

name follows create and links it to the vocabulary.

Command : :

Type : compiling word

Arguments :

Returns :

Description

creates a token for the keyword following the : in the buffer,

links it to the current vocabulary and sets the system in

compile mode.

Command : next

Type : compiling word

Arguments :

Returns :

Description

encloses a jump to the inner interpreter NEXT routine in the

dictionary.

Command : space

Type : command / IO

Arguments :

Returns :

Description

prints a space to the screen.

Command : echo

Type : command / IO

Arguments : <ascii code>

Returns :

Description

pops the stack and echoes the lsb of the word to the display.

Command : cls

Type : command / IO

Arguments :

Returns :

Description

clears the screen. It is a more efficient version of 12 echo.

Command : pos

Type : command / IO

Arguments :

Returns : <ypos> <xpos>

Description

pushes the current position (x,y) of the text cursor onto the

stack.

Command : tab

Type : command / IO

Arguments : <ypos> <xpos>

Returns :

Description

moves the text cursor to position (xpos,ypos) on the screen.

Command : malloc

Type : command / memory

Arguments : <size>

Returns : <status> [<address>]

Description

malloc will try to allocate a space of <size> bytes, if

unsuccessful <status> will be 0 else <status> will be 1 and

<address> will be the address of the allocated block.

Command : free

Type : command / memory

Arguments : <address>

Returns :

Description

free will deallocate the block pointed to be <address>. No error

will be reported if it is unsuccessful.

Command : ?

Type : command / IO

Arguments : <entry>

Returns :

Description

this command will display the word at the address pointed to

by <entry> in the current number base on the display.

Command : lrot

Type : command / stack

Arguments : <entry1> <entry2> <entry3>

Returns : <entry3> <entry1> <entry2>

Description

rotates the top 3 stack entries to the left by one slot.

Example : 1 2 3 lrot . . . gives 1 3 2

Command : rs>ds

Type : command / inter-stack

Arguments :

Returns : <top entry from return stack>

Description

pops the top entry from the return stack and pushes it onto the

data stack. CARE is recommended as popping a return

address without careful consideration will result in the forth

interpreter crashing. YOU HAVE BEEN WARNED

Command : ds>rs

Type : command / inter-stack

Arguments: <entry>

Returns :

Description

pops <entry> from the data stack and pushes it onto the return

stack. CARE is recommended here as a ds>rs without an

rs>ds will destroy the return stack and could kill forth. YOU

HAVE BEEN WARNED

Command : .

Type : command / IO

Arguments : <entry1>

Returns :

Description

displays the top stack entry in the currently selected base.

Command : .r

Type : command / IO

Arguments <entry1> <entry2>

Returns :

Description

displays the <entry2> in a field width of <entry1>

Command : cr

Type : command / IO

Arguments :

Returns :

Description

echoes a CR/LF to the screen.

Command : inkey

Type : command / IO

Arguments :

Returns : <status> [<key number>]

Description

inkey waits .01 of a second for a key to be pressed, if no key is

pressed it pushes a 0 otherwise it pushes the key and 1.

Command : get

Type : command / IO

Arguments :

Returns : <char>

Description

get waits indefinitely until a key is pressed and then it pushes

the ascii value of the key onto the stack.

Command : ?sp

Type : command / stack

Arguments :

Returns : <entry>

Description

pushes the value of the data stack pointer prior to the push

onto that data stack.

Command : i

Type : compile / loop index

Arguments :

Returns : <entry>

Description

pushes the value of the inner most loop index onto the data

stack.

Command : j

Type : compile / loop index

Arguments :

Returns : <entry>

Description

pushes the value of the 2nd inner most loop index onto the

data stack.

Command : k

Type : compile / loop

Arguments :

Returns : <entry>

Description

pushes the value of the 3rd inner most loop index onto the

data stack.

Command : -sp

Type : command / stack

Arguments : <entry1>

Returns :

Description

this command will reduce the depth of the stack by <entry1>

bytes. CARE is recommended.... always leave SP on a word

boundary. YOU HAVE BEEN WARNED

Command : +sp

Type : command / stack

Arguments : <entry1>

Returns :

Description

this command will effectively push <entry1> bytes onto the

stack although no actual valid data will be present. Used

mainly for reserving stack space. CARE: always ensure that

the stack remains on a word boundary when you have

finished. YOU HAVE BEEN WARNED.

Command : rrot

Type : command / stack

Arguments : <entry1> <entry2> <entry3>

Returns : <entry2> <entry3> <entry1>

Description

rotates the top three stack entries once to the right.

Example : 1 2 3 rrot . . . gives 2 1 3

Command : align

Type : command / memory

Arguments : <entry1>

Returns : <entry>

Description

replaces entry1 with the nearest value rounded up to a word

boundary

Example : dec 5 align . - would display 8

Command : over

Type : command / stack

Arguments : <entry1> <entry2>

Returns : <entry2> <entry1> <entry2>

Description

over pushes the second stack entry onto the data stack

Command : 2over

Type : command / stack

Arguments : <entry1> <entry2> <entry3>

Returns : <entry3> <entry1> <entry2> <entry3>

Description

2over pushes the third stack entry onto the data stack.

Command : swap

Type : command / stack

Arguments : <entry1> <entry2>

Returns : <entry2> <entry1>

Description

swaps the top 2 stack entries

Command : 2swap

Type : command / stack

Arguments : <entry1> <entry2> <entry3>

Returns : <entry3> <entry2> <entry1>

Description

swaps the first and third stack entries.

Command : dup

Type : command / stack

Arguments :

Returns : <entry1> <entry1>

Description

pushes the top stack entry onto the stack.

Command : drop

Type : command / stack

Arguments : <entry1> <entry2>

Returns : <entry2>

Description

pops the top stack entry.

Command: 2dup

Type : command / stack

Arguments : <entry1>

Returns : <entry1> <entry1> <entry1>

Description

duplicates the top stack entry twice.

Command : ?rs

Type : command / stack

Arguments :

Returns : <entry>

Description

pushes the value of the current return stack pointer,

Command : c!

Type : command / memory

Arguments : <entry1> <entry2>

Returns :

Description

puts the lsb of the word entry2 into the address entry1

Command : +!

Type : command / memory

Arguments : <entry1> <entry2>

Returns :

Description

adds entry2 to the value at address entry1

Command : c+!

Type : command / memory

Arguments : <entry1> <entry2>

Returns :

Description

adds the lsb of entry2 to the byte at address entry1

Command : 0set

Type : command / memory

Arguments : <entry1>

Returns :

Description

zeros the word at address entry1

Command : 1set

Type : command / memory

Arguments : <entry1>

Returns :

Description

sets the word at address entry1 to 1

Command : c0set

Type : command / memory

Arguments : <entry1>

Returns :

Description

sets the byte at address entry1 to zero

Command : c1set

Type : command / memory

Arguments : <entry1>

Returns :

Description

sets the byte at address entry1 to 1

Command : @

Type : command / memory

Arguments : <entry1>

Returns : <entry>

Description

pushes the word at address entry1 onto the data stack

Command : c@

Type : command / memory

Arguments : <entry1>

Returns : <entry>

Description

pushes the byte (expanded to 32 bits) at address entry1 onto

the data stack

Command : entry

Type : command

Arguments :

Returns : <entry>

Description

pushes the address of the first header word in the latest entry

in the CURRENT vocabulary.

Command : here

Type : command

Arguments :

Returns : <entry>

Description

pushes the address of the next free dictionary location onto the

data stack.

Command : ca!

Type : command

Arguments : <entry>

Returns :

Description

Stores the top stack entry in the word address location of the

latest entry in the CURRENT vocabulary.

Command : aspace

Type : command

Arguments :

Returns : 32

Description

pushes the ascii value of a space (32) onto the data stack.

Command : ,

Type : command

Arguments : <entry>

Returns :

Description

encloses the top data stack entry in the dictionary and

advances the dictionary pointer by 1 word.

Command : c,

Type : command

Arguments : <entry>

Returns :

Description

encloses the lowest byte of the top data stack entry in the

dictionary and moves the dictionary pointer forward by 1.

CARE IS RECOMMENDED !!!

Command : buffer

Type : system variable

Arguments :

Returns : <address of the input buffer>

Description

used to get characters from the input buffer

Command : !

Type : command / memory

Arguments : <entry1> <entry2>

Returns :

Description

puts the word entry2 in the address entry1

Command : 0<

Type : command / control

Arguments : <entry1>

Returns : <entry>

Description

if entry1 < 0 then push 1 else push 0

Command : 0>

Type : command / control

Arguments : <entry1>

Returns : <entry>

Description

if entry1 > 0 then push 1 else push 0

Command : execute

Type : command

Arguments : <entry>

Returns :

Description

pops the top stack entry and will execute the ARMFORTH

code at that address.

Command : abort

Type : system control

Arguments :

Returns :

Description

restarts the interpreter after a fault

Command : bin

Type : command

Arguments :

Returns :

Description

selects binary display mode

Command : oct

Type : command

Arguments :

Returns :

Description

selects octal display mode

Command : dec

Type : command

Arguments :

Returns :

Description

selects decimal display mode

Command : hex

Type : command

Arguments :

Returns :

Description

selects hex display mode

Command : tst

Type : command / logic

Arguments : <entry1> <entry2>

Returns : <entry>

Description

if bit number <entry1> in entry2 is set then push 1 else push 0

Command : ror

Type : command / logic

Arguments : <entry1> <entry2>

Returns : <entry>

Description

rotate <entry2> by <entry1> bits right and push result onto

stack.

Command : >

Type : command / control

Arguments : <entry1> <entry2>

Returns : <entry>

Description

if entry2 > entry1 then push 1 else push 0

Command: >=

Type : command / control

Arguments : <entry1> <entry2>

Returns : <entry>

Description

if entry2 >= entry1 then push 1 else push 0

Command : <

Type : command / control

Arguments : <entry1> <entry2>

Returns : <entry>

Description

if entry2 < entry1 then push 1 else push 0

Command : <=

Type : command / control

Arguments : <entry1> <entry2>

Returns : <entry>

Description

if entry2 <= entry1 then push 1 else push 0

Command : =

Type : command / control

Arguments : <entry1> <entry2>

Returns : <entry>

Description

if entry2 = entry1 then push 1 else push 0

Command : <>

Type : command / control

Arguments : <entry1> <entry2>

Returns : <entry>

Description

if entry2 <> entry1 then push 1 else push 0

Command : 0=

Type : command / control

Arguments : <entry1>

Returns : <entry>

Description

if entry1 = 0 then push 1 else push 0

Command : minus

Type : command / arithmetic

Arguments : <entry1>

Returns : -<entry1>

Description

changes sign of top stack entry

Command : min

Type : command / arithmetic

Arguments : <entry1> <entry2>

Returns : <entry>

Description

leaves the smaller of the 2 top entries on the stack

Command : max

Type : command / arithmetic

Arguments : <entry1> <entry2>

Returns : <entry>

Description

leaves the larger of the 2 top entries on the stack

Command : <<

Type : command / arithmetic

Arguments : <entry1> <entry2>

Returns : <entry>

Description

leaves <entry2> left shifted by <entry1> bits on the stack

Command : >>

Type : command / arithmetic

Arguments : <entry1> <entry2>

Returns : <entry>

Description

leaves <entry2> right shifted by <entry1> bits on the stack

Command : not

Type : command / logic

Arguments : <entry>

Returns : <entry>

Description

if top stack entry is not zero then push 1 else push 0

Command : and

Type : command / logic

Arguments : <entry1> <entry2>

Returns : <entry>

Description

replaces the top 2 stack entries by the bitwise AND of them.

Command : eor

Type : command / logic

Arguments : <entry1> <entry2>

Returns : <entry>

Description

replaces the top 2 stack entries by the bitwise EOR of them

Command : or

Type : command / logic

Arguments : <entry1> <entry2>

Returns : <entry>

Description

replaces the top 2 stack entries by the bitwise OR of them

Command : bic

Type : command / logic

Arguments : <entry1> <entry2>

Returns : <entry>

Description

clears bits in entry2 that are set in entry 1

Command : 2/

Type : command / arithmetic

Arguments : <entry1>

Returns : <entry1> DIV 2

Description

divides to stack entry by 2

Command : 4+

Type : command / arithmetic

Arguments : <entry1>

Returns: <entry1>+4

Description

adds 4 to top stack entry

Command : 4-

Type : command / arithmetic

Arguments : <entry1>

Returns : <entry1>-4

Description

subtracts 4 from the top stack entry

Command : 4*

Type : command / arithmetic

Arguments : <entry1>

Returns : <entry1>*4

Description

multiplies to stack entry by 4

Command : 4/

Type : command / arithmetic

Arguments : <entry1>

Returns : <entry1> DIV 4

Description

divides top stack entry by 4

Command : +

Type : command / arithmetic

Arguments : <entry1> <entry2>

Returns : <entry1>+<entry2>

Description

adds top 2 stack entries and pushes the result

Command : -

Type : command / arithmetic

Arguments : <entry1> <entry2>

Returns : <entry2>-<entry1>

Description

subtracts top 2 stack entries and pushes result

Command : *

Type : command / arithmetic

Arguments : <entry1> <entry2>

Returns : <entry2>*<entry1>

Description

multiply produces a 32 bit result

Command : /

Type : command / arithmetic

Arguments : <entry1> <entry2>

Returns : <entry2>DIV<entry1> <entry2>MOD<entry1>

Description

divides 2nd entry by first and leaves DIV and MOD on stack

Command : abs

Type : command / arithmetic

Arguments : <entry1>

Returns : <entry1>

Description

if negative makes entry positive

Command : search

Type : command

Arguments : <address>

Returns : <status> [<address>]

Description

used to locate a key word code address. The dictionary

pointed to be <address> will be searched. if the token is found

then status will be 0 and the address of the routine will be

pushed to the stack, otherwise a 1 will be pushed.

Command : 0

Type : command / arithmetic

Arguments :

Returns : 0

Description

pushes a zero onto the data stack

Command : 1

Type : command / arithmetic

Arguments :

Returns : 1

Description

pushes a 1 onto data stack

Command : -1

Type : command / arithmetic

Arguments :

Returns : -1

Description

pushes -1 onto the data stack

Command : 1+

Type : command / arithmetic

Arguments : <entry1>

Returns : <entry1>+1

Description

adds 1 to top stack entry

Command : 1-

Type : command / arithmetic

Arguments : <entry1>

Returns : <entry1>-1

Description

subtracts 1 from the top stack entry

Command : 2+

Type : command / arithmetic

Arguments : <entry1>

Returns : <entry1>+2

Description

adds 2 to top stack entry

Command : 2-

Type : command / arithmetic

Arguments : <entry1>

Returns : <entry1>-2

Description

subtracts 2 from the top stack entry

Command : 2*

Type : command / arithmetic

Arguments : <entry1>

Returns : <entry1>*2

Description

multiplies top stack entry by 2

Command : core

Type : system variable

Arguments :

Returns :

Description

Invokes the CORE vocabulary.

Command : quit

Type : command

Arguments :

Returns :

Description

exits from the forth environment.

Command : singletask

Type : command

Arguments :

Returns :

Description

stop multitasking

Command : multitask

Type : command

Arguments :

Returns :

Description

start multitasking

Command : fork

Type : command

Arguments : address of routine to fork

Returns :

Description

takes address of routine from stack and starts the task when

the next quantam elapses.

Example: ‘ test fork - will run test as a background task

Command : taskblock

Type : command

Arguments :

Returns :

Description

Command : quantam

Type : system variable

Arguments :

Returns : address of multitask data block

Description

used by multitasking code to get access to task queues and

status. enables utilities to be written to examine task status

etc. DO NOT MODIFY THE DATA BLOCK THIS POINTS TO.

Command : token

Type : command

Arguments : <separator>

Returns :

Description

tokenises the next ‘word’ separated by <separator> into the

dictionary space

Example : aspace token - tokenises next word in input

buffer

Command : compiler

Type : system variable

Arguments :

Returns : <entry>

Description

Pushes the address of the compiler variable which points to

the last entry in the COMPILER vocabulary

Command : context

Type : system variable

Arguments :

Returns : <entry>

Description

Pushes the address of the system CONTEXT variable to the

stack.

Command : current

Type : system variable

Arguments :

Returns : <entry>

Description

Pushes the address of the current vocabulary variable.

Command : dp

Type : system variable

Arguments :

Returns : address of dictionary pointer variable

Description

used to locate the current dp value

Command: himem

Type : system variable

Arguments :

Returns : address of himem variable

Description

the word at this address is the value of the highest address

that the dictionary pointer could increase towards before

corrupting the stack space.

Command : lbp

Type : system variable

Arguments :

Returns : address of line buffer pointer

Description

used by inline and token for character entry and tokenisation

Command : mode

Type : system variable

Arguments :

Returns : address of mode variable

Description

indicates if system is in compile (1) or execute mode (0)

Command : state

Type : system variable

Arguments :

Returns : address of state variable

Description

used with mode to decide if a word is compiled or executed

BEGIN..IF..WHILE

Provides a form of WHILE loop in ARMFORTH, the code

between BEGIN and IF will be repeated while the top stack

entry upon execution of the IF is NON zero, if it is true then the

code between the IF and WHILE will be executed and a

branch made back to the code following BEGIN. If the stack

contained a zero when the IF evaluated the code following the

WHILE while be executed.

Example: print keys while <space> is not pressed.

: test begin get dup 32 <> if vdu while [DONE] ;

test [[a]]a[[b]]b[[<SPACE>]] DONE OK

BEGIN..IF..ELSE..WHILE

This loop construct is essentially the opposite of the loop

above. It executes the code between the BEGIN and THE IF

while the top stack entry is false and terminates when it is true.

Example:

: test begin get dup 32 = if [Done] else vdu while ;

test [[a]]a[[b]]b[[<SPACE>]] DONE OK

FORTH command list

Some Syntax:

<...> means item must be present / or will be created

[] means optionally created.

About this list:

Command : name of command

Type : variable / command / compiling command

Arguments : <entry1> <entry2> <entry3> .. <nth entry>

Returns : <entry1> <entry2> <entry3> .. <nth entry>

Command : editv

Type : system variable

Arguments :

Returns : address of edit vector

Description

used if a replacement ‘inline’ input routine is written.

Command : base

Type : system variable

Arguments :

Returns : address of system base

Description

used to change the current number entry mode base

Example: 16 mode ! - sets hex numeric entry

Flow Control

This section will detail all the flow control commands

used in ARMFORTH. In the examples a brief description of

what the example will do will be given and then the actual

code. Type exactly what you see written, a <RETURN> means

press the RETURN key, everything after the <RETURN> up to

the OK shows what ARMFORTH will produce, unless

surrounded by [[]] which means type the contents.

BEGIN..END

This is the fastest and most primitive of ARMFORTH loop

constructs. The code between the BEGIN and the END will be

executed if the top stack entry is zero when the END is

reached, at which point program execution will continue with

the code following the END.

Example: wait for the user to press space then print DONE.

:wait begin get aspace = end [DONE] ;

wait <RETURN> [[A B C <SPACE>]] OK

DO ... LOOP

The most basic of ARMFORTH loop commands. It takes

2 stack entries and starting at the top stack entry count up to

the second stack entry. The loop will always execute at least

once. The is no real loop variable but a loop variable may be

accessed by the index i,j or k depending upon the depth of

nesting (i is first). The addition is made BEFORE comparison

of the terminating condition.

Example: to count from 0 to 9 displaying each number

: test cr 10 0 do i . loop ;

test <RETURN>

0 1 2 3 4 5 6 7 8 9 OK

DO ... +LOOP

similar to DO..LOOP but the stack entry before the

execution of +LOOP is the increment.

Example: to count from 0 to 8 in 2's

: test cr 10 0 do i . 2 +loop ;

test <RETURN>

0 2 4 6 8 OK

LEAVE

This command will cause the currently executing do..loop

or do..+loop to terminate (it set the current count to be the

finishing value). It will not prevent a loop from executing less

than once.

IF..THEN

Provides a simple way to conditionally execute code, if

the top stack entry is NON zero when the if evaluates then the

code between the IF and THEN is executed, if the stack entry

was zero then execution skips to the code following the then.

Example: print BEEP if a 1 is the top stack entry.

: bleep if [BEEP] then ;

0 bleep <RETURN> OK

1 bleep <RETURN> BEEP OK

IF..ELSE..THEN

Provides facilities for executing one section of code OR

another. If the top stack entry is true the code between the IF

and ELSE is executed otherwise the code between the ELSE

and the THEN will be executed. Program execution will

continue with the code following the THEN in both cases.

Example: if top stack entry is 1 print TRUE else print FALSE.

: test if [TRUE] else [FALSE] then ;

1 test <RETURN> TRUE OK

0 test <RETURN> FALSE OK

Data Types

ARMFORTH has only has two real data types, bytes and

words, any others are created as they are needed and may be

accessed by combining the two supported types.

All stack entries are 32 bits wide and may be used in any

fashion the user requires, the only condition is that EVERY

stack entry be WORD aligned after any created structure has

been pushed onto it.

There are built in string printing support and compile

commands but string manipulation routines such as strcpy are

not, they are provided in the stringlib file though, and any

additional special structure handling routines would have to be

written.

The format of an ARMFORTH string is a length as the top

stack entry with the string contained on the stack in 4 byte

chunks starting with the first letter.

File Handling

ARMFORTH has RISCOS file handling and uses

commands that are very similar to BASIC. These are LOAD,

OPEN, CLOSE, PTR, EXT, EXT#, EOF and CLOSE (These

commands are covered in more detail later on in this manual).

ARMFORTH filing commands (open and load) expect a

string on the stack when they execute, the remainder expect a

file handle.

ARMFORTH has a file stack that may be nested 7 deep,

this means that when loading a file it could be split into

functional libraries (like the editor with stringlib). If more than

7 files are opened at one time ARMFORTH will abort and it is

a good idea to restart and reduce the file depth.

Multitasking

It is import to appreciate that when multitasking the tasks

have separate data and stack spaces they share the same

dictionary space. This means that any task which modified the

dictionary could crash the other tasks.

This is not an unacceptable risk because the advantages

far surpass this problem, for example multiple copies of the

same code could be running, with different data. Processes

may communicate with each other via common data in the

dictionary (semiphores may be implemented), obviously the

system could be abused by forking a process that would

compile a file into the background with disastrous results.

Finally all tasks have equal priority and are run in a round

robin type task queue and are swapped every 10ms (or as

close to that interval as possible) - It should be noted that

assember code will NOT multitask in forth until it exits back

into the ARMFORTH kernel (this is how semaphores may be

implemented).

ARMFORTH

(c) Davidsoft 1991

Based upon the language FORTH

Version 1.10

David Redman

33 Manor Road,

Potters Bar,

Herts.

EN6 1DQ

Introduction

ARMFORTH is a FORTH like language, making

extensive use of RPN notation and stacks. many of the

commands contained in the language are identical to their

FORTH counterparts. However there are some differences.

What ARMFORTH offers :

• Multitasking : - 8 separate processes.

Each task has its own data, and return stacks.

• Dynamic memory allocation words.

(malloc and free).

• File handling

• An inbuilt editor written in ARMFORTH.

• A WIMP version (not internally multitasking)

for rapid program development and testing in

the DESKTOP environment.

• 32 bit stack and data manipulation

• An assembler (SOON)

ARMFORTH is small, only 10K (unsqueezed) for the

NON WIMP version and 11K for the WIMP. It is also faster

than BASIC, as an example:

Language empty loop to 1 million

ARMFORTH: 6

BASIC: 14 (integer X%)

38 (using x)

'C' 2 (using integer)

However the size of the code is also important, for the 'C'

a mere 48K, for BASIC about 40bytes (40K counting ROM)

for ARMFORTH, 24 bytes (10K including KERNEL).

